Perturbation Method for a Non-convex Integral Functional

نویسندگان

  • Milen Ivanov
  • Nadia Zlateva
چکیده

We consider a model problem of minimization of an integral functional over Lipschitz curves. In order to ensure existence of minimum for some perturbed function, a novel variational principle is adapted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified homotopy method to solve non-linear integral equations

In this article we decide to define a modified homotopy perturbation for solving non-linear integral equations. Almost, all of the papers that was presented to solve non-linear problems by the homotopy method, they used from two non-linear and linear operators. But we convert a non-linear problem to two suitable non-linear operators also we use from appropriate bases functions such as Legendre ...

متن کامل

T-Stability Approach to the Homotopy Perturbation Method for Solving Fredholm Integral Equations

The homotopy perturbation method is a powerful device for solving a wide variety of problems arising in many scientific applications. In this paper, we investigate several integral equations by using T-stability of the Homotopy perturbation method investigates for solving integral equations. Some illustrative examples are presented to show that the Homotopy perturbation method is T-stable for s...

متن کامل

A HOMOTOPY PERTURBATION ALGORITHM AND TAYLOR SERIES EXPANSION METHOD TO SOLVE A SYSTEM OF SECOND KIND FREDHOLM INTEGRAL EQUATIONS

In this paper, we will compare a Homotopy perturbation algorithm and Taylor series expansin method for a system of second kind Fredholm integral equations. An application of He’s homotopy perturbation method is applied to solve the system of Fredholm integral equations. Taylor series expansin method reduce the system of integral equations to a linear system of ordinary differential equation.

متن کامل

A Two Scale Γ-convergence Approach for Random Non-convex Homogenization

We propose an abstract framework for the homogenization of random functionals which may contain non-convex terms, based on a two-scale Γ-convergence approach and a definition of Young measures on micropatterns which encodes the profiles of the oscillating functions and of functionals. Our abstract result is a lower bound for such energies in terms of a cell problem (on large expanding cells) an...

متن کامل

A comparison between the Homotopy Perturbation Method and Adomian’s Decomposition Method for Solving Nonlinear Volterra Integral Equations

In this paper, we conduct a comparative study between the homotopy perturbation method (HPM) and Adomian’s decomposition method (ADM) for analytic treatment of nonlinear Volterra integral equations, and we show that the HPM with a specific convex homotopy is equivalent to the ADM for these type of equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Optimization Theory and Applications

دوره 157  شماره 

صفحات  -

تاریخ انتشار 2013